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Abstract

In this work, we address two main objectives. The first one is to provide a rigorous foundation to the
maximum entropy principle in statistical physics, by making use of the Fenchel-Rockafellar duality.
The second objective is to discuss the well-foundedness of the so-called escort distributions in the
context of non-extensive entropy maximization. The duality treatment of maximum entropy
confirms the non-rigorous results obtained via the usual variational calculus, however, the use of
escort distributions yields undefined behavior when used consistently, and only leads to the desired
results when used in an ad-hoc manner.

1. Introduction

The principle of maximum entropy, that is, the idea of constructing the most unbiased probability distribution
by maximizing an entropy functional, is a powerful inference tool in statistics which is now widely used in several
fields of science as well as engineering [ 1, 2], ecology [3, 4], astronomy [5], social dynamics [6, 7], and signal and
image science [8], among others. Originally introduced by Gibbs [9] in statistical mechanics as the justification
for the canonical ensemble for equilibrium systems, and extended outside of physics by Jaynes [10], the principle
of maximum entropy is based on the interpretation of Shannon’s entropy as a measure of information. In this
way, maximizing the entropy should be understood as choosing the model with less information content
provided that it agrees with the constraints given.

Even after the proof of uniqueness of the Gibbs-Shannon entropy in the context of inference by Shore and
Johnson [11], the use of different entropy functionals has been proposed, in order to justify the existence of
power-law distributions in complex, non-equilibrium systems such as space and laboratory plasmas [12, 13],
turbulent fluids [14], self-gravitating systems of astrophysical interest [15] and also in open, finite systems [16],
in what is known as non-extensive statistical mechanics [17, 18]. However, the use of Tsallis’ g-entropy seems to
require [19, 20] a different kind of expectation constraint that uses the so-called escort distributions, originally
introduced by Beck and Schlégl [21], instead of the target distribution. This modification has been both subject
to criticism on formal grounds and found to produce inconsistencies [22—28]. Furthermore, it has been largely
shown that power laws can be recovered without the need to invoke generalized entropies [29-33], most notably
under the framework of superstatistics [34]. Despite this, the use of non-Shannonian entropies have been
supported recently under particular assumptions [35].

Maximizing the entropy under expectation constraints is usually performed by making use of variational
calculus. More precisely, the Lagrangian of the problem is derivated formally, meaning that the infinite-
dimensional probability density that is searched for is manipulated as if it would be a finite-dimensional
(discrete) probability distribution, and the integral entropy-functional as if it was a finite sum. The functional
analysis so avoided needs, somehow, to be clarified. Dealing with infinite-dimensional convex optimization with
linear (expectation) constraints can be tackled using a powerful convex analytic machinery, in particular the so-
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called partially finite convex programming, as introduced in [36, 37] and extended in [38]. Notice that formal
derivation eludes the fact that the entropy takes infinite values, and as so cannot be derivated (formally or not)
throughout the space of integrable functions. As an example, consider the function defined on R by

— if 0, 1),
pe) = {wmie 1O o)

0 otherwise.

Then p is nonnegative, integrable with unit integral, and such that all its positive moments
1
,un:f p(x)x" dx, n=20,1,2,... )
0

exist. It is therefore a well-behaved probability density, and yet it has infinite entropy.

Moving beyond the use of Shannon’s entropy, from the point of view of optimization, introduces additional
issues to be aware of. Most important of all, the escort distributions introduce non-linear constraints that make
the problem no longer convex. Linearity can be restored via a transformation of variables, although this brings us
to the following alternative: either there is no solution or there are infinitely many solutions (see section 4.3).

In this paper, we provide a rigorous derivation of the Maximum Entropy distributions, using Fenchel duality
argument. Moreover, we apply this strategy for dealing with non-extensive statistics, and show that the escort
avoidance of it yields a somewhat undetermined framework.

The manuscript is organized as follows. In section 2, we recall the historical background of maximum
entropy in statistical physics, and we outline the computation of maximum entropy distributions via variational
calculus. We emphasize that this approach to the derivation of solutions presents weaknesses, which motivates
our treatment via Fenchel-Rockafellar duality. In section 3, we review the main mathematical tools for such a
treatment. In section 4, we apply the results of the previous section to provide rigorous justification of maximum
entropy solutions, in both the Boltzmann-Shannon entropy case and the Tsallis entropy case. Finally, section 5
presents a discussion and conclusion of this work.

2. Maximum entropy in statistical physics

The maximum entropy principle [10] is a conceptual extension of the Gibbs method for the construction of
ensembles in statistical mechanics [9]. In the original argument by Gibbs, the equilibrium states in nature are
states of maximum thermodynamic entropy

Sipl = —kg fv p(D)Inp(T) dT, 3)

where I’ = (ry,...,'n, P1o- - Pn) are the microstates of the system, and S is constrained by the external
conditions. However, after the seminal work of Shannon establishing information theory, Jaynes recognized the
maximization of the entropy functional S as the search for the most unbiased model for the microstate
probability, that is, as a problem of statistical inference.

The maximum entropy ensemble under the constraint of fixed mean energy

[ r@mn@ar=v, @
where U corresponds to the internal energy, and normalization,
J pmadr =1, )

is the well-known canonical ensemble representing a system in thermal equilibrium at temperature T,

exp(—FH(T))

T; = 6
p@; B3) 7205) (6)
where 3= 1/(kgT) is the inverse temperature and Z(3) the partition function,
Z(® = | exp(~BH(T) dT. @)
1%

The appropriate value of 3 for a given value of U'is the one that realizes the constraint in (4), which in
thermodynamics leads to the caloric curve U(0),

mmz—%mmm. ®)
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By replacing (6) into (3), the maximized value of the Gibbs entropy is then
S(B) = Slp(3)] = kg(InZ(B) + pU), 9
which, by using the definition of the (Helmholtz) free energy F:= U — T8, leads to

1
F(B) = ——=InZ(B). (10)
B
In the case of non-extensive statistical mechanics, one replaces S in (3) by the Tsallis entropy,
1
S =—|1— M4 dr 11
p] WJ( J @ ) ()

and maximizes it subject to the usual normalization constraint in (5) and a generalized expectation constraint, of
the form

J, p(@IHT) dT

v = U, (12)
J, p(@)?dT
v

According to variational calculus, this leads to the well-known g-canonical ensemble of Tsallis statistics,
1 1
p@s B, q) = [1+ (g — DBHD)I. (13)

Z4(B) N

In order to state the derivation of the canonical ensemble in (6) in more rigorous terms, we consider the
optimization problem

Maximize S (p) = —f p®)Inp(x) dx
v
subjectto p € INV),
[ peoax=1,
%

fv P(OH () dx = E,.

(Z)

We (temporarily) assume that the domain Vis a bounded subset of R”, in whichn = 6N with N the number
of particles. In the above problem, H denotes the Hamiltonian of the system, which we assume to be bounded
on V. The control variable p lies in the infinite dimensional space L'(V), and the integrals in the constraints are
well-defined on L'(V).

The objective functional is the Boltzmann-Shannon entropy. It can be written as

S(p) = —j; ho(p(x)) dx, (14)
in which
tlnt ifr> 0,
ho(t) =10 ift =0, (15)
) ift < 0.

Itis concave, and clearly maximizing .% is equivalent to minimizing the convex functional —.% . The
constraints involve the linear mappings

Ip :=fv pxdx, pe (V)
and
Ap ==J; POHX dx, pe (V).

For convenience, we denote by A, the linear mapping given by A.p = (Ip, Ap) € R2.

3. Review of convex analytic tools

Let L be any real vector space. A function f: L — [ — 00, 0o ] is said to be convex if its epigraph, the set
epif:={(x, ®) € L x R|f(x) < a},

isaconvex subsetof L x IR.Itissaid to be proper convex if it never takes the value — oo and it is not identically
equal to co. A function g: L — [ — 00, 00 ] is said to be concave if —gis convex, and proper concave if —gis proper

3
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convex. Notice that gis concave if and only if its hypograph
hypo g = {(x, @) € L x Rjg(x) > a}
is convex. The effective domain of a convex function fis the set
dom f= {x € L|f(x) < co}.
The effective domain of a concave function gis the set
dom g = {x € L|g(x) > oo}.

The only functions that are both proper convex and proper concave are the affine functions. The effective
domain of each affine function is equal to L, both as a convex and concave function.

In optimization, we use indicator functions to encode constraints. The indicator function of a subset C C Lis
the function

0 ifxeC,
oo otherwise.

Oc(x) = {

Let now L and A be vector spaces paired by a bilinear mapping
(YL x AR(x, &) {x, ).

Anstandard exampleis L = R? = A with the usual Euclidean scalar product. Another example is obtained by
takingL = L'(V)and A = L°°(V) with Va subset of R".
The convex conjugate of a function f(convex or not) is defined as the function

@@ =sup{(x, §) —f)xe X}, e
The concave conjugate of a function f (concave or not) is the function
f.(6) = inf((x, &) — fIx € X}, £€A.

A remarkable fact is that convex conjugacy acts as an involution on certain classes of functions. For example,
if f: R — [—o00, 0o]is alower-semicontinuous proper convex function, then

f*‘k = (f*)* — f‘
Given a convex subset C € R, we call relative interior of C the interior of C with respect to its affine hull aff C.
Recall that aff Cis the smallest affine subspace that contains C. The relative interior of Cis denoted by ri C. For
example, if Cis a closed segment in R?, its interior is empty while its relative interior is the segment without its
ends. It can be shown that the relative interior of a nonempty convex set is necessarily nonempty.

Theorem 1. (Fenchel) Let f and g be functions on R respectively proper convex and proper concave such that
ridom fNridom g = @. (16)
Then
n=inf {f(x) — g} = sup {g,(&) — [*(&)}

EeR?
and the supremum is attained.

The above theorem asserts equality between the optimal values of two problems, together with attainment in
the second one. Is customary to call these underlying optimization problems the primal problem and the dual
problem, respectively.

In the above theorem, both the primal and dual are finite dimensional. Howover, problems such as () have

constraints involving some linear mapping. The following theorem will make it possible to dualize infinite
dimensional problems with finitely many linear constraints.

Theorem 2. Let be given:

(i) Land A, real vector spaces;
(i) (), abilinear formon L x A;
(iii) A: L — RY, alinear mapping
(iv) F: L — (—o00, 00], a proper convex function;

(v) g RY — [—o0, 00), aproper concave function.

4
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Assume that A admits a formal adjoint mapping A*, that s, a linear mapping A*: R? — A such that
(Ax, y) = (x, Aty)forevery x € Landevery y € R?. Then, under the qualification condition

(QC) r1i(Adom F)Nri(domyg) = &,

one has

7= inf {F(x) — g(Ax)} = ma)g{g*()\) — F*(A*\)}.
xeX AR

This theorem is the corner stone of what is is referred to as partially finite convex programming. Various forms
appeared in the literature (see in particular [36, 37]). The selected form is as in [38], where no topological
structure on the infinite dimensional side is requested. The optimization problems

Minimize (F — goA) and Maximize (g, — F*oA")

are respectively referred to as the primal and dual problems. The function D := g, — F*oA" appearingin the
dual problem is referred to as the dual function. Again, the theorem asserts the equality between the optimal
values of the primal and dual problems, together with dual attainment. The next result will provide conditions
that will guarantee primal attainment as well.

Theorem 3. (Primal attainment) With the notation and assumptions of the previous theorem, assume in addition
that

(QC*) ridom g, Nridom(F*oA") = @.

Suppose further that

(a) F**=Fandg, =g
(b) thereexists X dual optimal and X € OF* (A*X) such that F*o A* has gradient AX at .

Then X is primal optimal.

The latter result provides not only a condition for primal attainment, but it also makes appear as a watermark
the possibility of a link between primal and dual solutions. The bi-conjugate relationships in Assumption (a) are
central in the theorem, and the difficulty in our problem is to prove that the entropy satisfies this property. It
turns out that, in our context, it is possible to compute the conjugate of the Boltzmann-Shannon entropy by
conjugating through the integral sign.

An integral functional is a functional of the form

Hp)= [ hpe, %) dpx), wE L (17)

Here, Vis assumed to be endowed with a o-algebra of measurable sets and with a measure denoted by y; the
function h is called the integrand, and the argument p is assumed to pertain to some space of measurable
functions L. In our context, it is enough to consider such functional on the familiar space L = L'(V), implicitly
endowed with the Borel o-algebra and the Lebesgue measure. Moreover, dependence of ki in its second
argument is not vital here, and we are only interested here in the case where h(p(x), x) = h,(p(x)).

Clearly, h,, is alower semi-continuous convex proper function so that it satisfies 1.* = h,. Conjugating #
is elegantly performed by conjugating the integrand, as we shall see now. Following Rockafellar, we say that’a
space L of measurable functions is decomposable if it is stable under bounded alteration on sets of finite measure.’
Otherwise expressed, L is decomposable if and only if it contains all functions of the form

lrp, + 1rp,

in which T has finite measure, p,, is a measurable function such that the set p,(T) isbounded, and p is any
member of L. Here, 1,-denotes the characteristic function of T: 11(x) equals 1 if x € T'and 1(x) equals zero
otherwise; and T denotes the complement of T. One can easily see that the familiar L'-spaces are decomposable,
which includes our workspace LY(V).

Theorem 4. (Rockafellar) Let L and A be spaces of measurable functions on {2 paired by means of the standard
integral bilinear form

() = [ Fo000 dx
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Let A be the functional of integrand h., that is,
Hp) = [ ho(po) dx

with h, proper convex and lower semi-continuous. Assume that L is decomposable and that S has nonempty
effective domain. Then

#70) = [h:(p(0) dx

forevery o € A, and H* is convex on A.

Applying the latter theoremwith L = L'(V), A = L°°(V') and h, the above defined integrand of the
Boltzmann-Shannon neg-entropy we see that, in our case,

HH(p) = fv he (¢ () dx.

By means of an easy computation, we can see that the function h; is given by
hi(r) =exp(t — 1), T€R.

Finally, since A = L°(V') is also decomposable, we obtain that
) = [ (pe) dx = [ h(p(0) dx = H#(p).
v v

We conclude that our entropy satisfies the bi-conjugacy relationship requested in theorem 3.
Before returning to our specific problem, let us state one more result, in which an explicit relationship
between primal and dual solutions is obtained.

Theorem 5. (Primal-dual relationship) With the notation and assumptions of theorem 2 assume in addition that
dom D has nonempty interior, that A is an integral functional of integrand h such that conjugacy through the
integral sign is permitted. Assume that, as in theorem 3, #** = A and g,, = g. Assume finally that the conjugate
integrand h* is differentiable over R, and that there exists some dual-optimal vector X in int dom D. If

P = h (AN, %) € L,

then p is a primal solution.

We are now ready to get back to our specific entropy problem.

4. Maximum entropy densities

4.1. The case of Boltzmann-Shannon entropy
Problem (£) can be written as

Minimize #(p) — g (Aop)
over the space L'(V), in which
Agp=(Ip, Ap) e R x R =R?
and g, is the function on R? given by
&6 (Mo M) = =153 (1) — b1y (1,)-

The use of the indicator functions 6;1,( - ) and (g, (-) enables to encode the constraints in (&). Straightforward
computations show that the adjoint mapping A%: R? — L>(V)is given by

Ao V(X)) = Ao + AH (x).
and that
(go)*(Am >\) = Ao + )\Eo.

Accounting for the fact that, as we have seen above, the entropy can be conjugated by conjugating through the
integral sign, the dual problem reads:

Maximize D(\,, A) := Ao + AE, — exp(A, — 1) f exp (AH (x)) dx.
%
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The function D is obviously concave and differentiable on IR2. Its stationary points must satisfy the system
0 = 1 — exp(lo — 1)f exp (AH (%)) dx,
v

0 = Eo— exp(Ro — 1)f H®)exp (AH (%)) dx,
\%4

which reduces to
J, H®)exp (AH (x)) dx
0=E,— ¥ _ ) (18)
fv exp (AH (x)) dx
Notice that the equality in (18) is also the first order optimality condition of the problem,
@ Maximize AE, — In j‘; exp(AH (x)) dx
st. AeR

Proposition 6. The function

D) = \E, — In f exp(\H (%)) dx (19)

v

to be maximized in Problem (&) is concave, smooth and everywhere finite.

The function hJ (1) = exp(T — 1) obviously meets the requirements of theorem 5. Provided we can obtain
adual solution (\,, \), the optimal density is then given by

exp(AH (x))
J, exp(RH () dx’

P(x) =exp[re — 1 + AH(®)] = (20)

where X maximizes the function D.
Note that p(x) corresponds to the canonical ensemble p(I'; ) under the identification A = — /3, and also
() corresponds to the negative of the maximized entropy S in units of k.

4.2. The case of Tsallis entropy
Tsallis entropy of a probability density p is define as the integral

1
S0y = ——(1 = [poor ax) 21
)= [r @1
provided p € LY(V). The computations differ depending on whether g > 1orq € (0, 1).

4.2.1. Caseq > 1
Maximizing the Tsallis entropy is equivalent to minimizing the integral functional

7yp) = [ha(p(0) dx, 22)
in which

ltq ift >0,
he(t) =1 ¢ (23)

oo ift < 0.

Notice first that LI(V) C L'(V), since the Lebesgue is a finite measure on V. An immediate consequence is
that L'(V) N LYV) = LYV, and our optimization problem takes place in the decomposable space L (R"). As
in the case of the Boltzmann-Shannon entropy, the integrand h,, is proper convex and lower semi-continuous.
We now proceed to compute its convex conjugate. We have:

hy (1) = sup (t1 — hy(t)) = sup (t7 — q't9).

teR teR

If 7 < 0, the above supremum is attained at t = 0, so that hq* (1) = 0.Suppose now that 7 > 0. The function
t— T — qiltq is differentiable on R:t. Its derivative, the function t+— 7 — 971, vanishes at

7
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1
= Tq1.

-1 _

Therefore, on denoting g’ the conjugate exponent of g (defined by the relationship g~ + ¢ 1), we obtain:

hy (1) = T — g i = (1 - l)7’411 =g,
q

In summary, the conjugate is given by

. L/Tq/ if >0,
hyj(t) =14
0 if7 <0.

Asin the case of the Boltzmann-Shannon entropy, the conjugate integrand is everywhere finite and
differentiable. Everything is then similar to the Boltzmann-Shannon entropy case, except for the trick consisting
in considering Problem &; The dual function is now given by

DO, \) = Ao + A = [y O + AH () dx = Ao + AE - L (No + AH®)? dx.
q" Irt+AH®)>0

Its effective domain (as a concave function) is the set of (A, \) € R2 such that the function
X — hq* (A + AH (x)) isintegrable on V. If His bounded on V, then the domain of D is R?. In this case, the
optimality system is, as usual, provided by Fermat’s principle, which reads here:

1= f O + AH)) ! dx,
Ao AH ()>0

E, = f H) O + AH) ! dx.
Aot AH (0)>0

If (Ao, ) denotes a solution to the above system, more likely to be obtained via the maximization of D(A,, A),
then the optimal probability is given by

P =hy'(Xe + AH (%)) = {0 if Ao + AH(x) <0, ”

Mo + NAH )1 if Ao + AH(x) > 0.

4.2.2.Caseq € (0,1)
It is readily seen that maximizing the Tsallis entropy in this case is equivalent to minimizing the integral
functional

. —ltq ift >0,
Tup) = [hy(p@)dx,  with g0 =1 g
00 ift <O0.

The above functional is well-defined on the vector space L' (V') N L9(V'). Note that the mapping

fe (fim)

fails to be a norm, as is the case when g > 1, since it does not satisfy the triangle inequality. However, the
following holds:

+ the functional N,(f) = /| f|? satisfies the triangle inequality /| f; + f2|? < [T+ [5]%

« LY(V)is complete metric space with the distance
dh = [1f = fi1.

Animmediate consequence of the first point is that LY(V') is decomposable. Letf€ LY(V),let T C Vbea
measurable set of finite measure, and let f, be a (measurable and) bounded on T. Then,

flﬂTfo + Iref|t <j;|fo|q +j;[|f|q;

In the right hand term, the first integral is finite since |f,| is bounded on T'and T has finite measure, and the
second integral is also finite since it is bounded above by N (f) and N,(f) is finite.

The decomposability of both L9(V') and L'(V') implies, of course, that of their intersection. This will enable
us to conjugate .7, through the integral sign.




10P Publishing

Phys. Scr. 99 (2024) 075265 P Maréchal et al

Let us now compute the conjugate if the function h,. Asin the previous case, we have:

hy () = sup (t7 — hy(t)) = sup (t7 + g~ 't9).

teR teR,

Itis easy to see that, if 7 > 0, then h (7) = oo. Suppose now that 7 < 0, and let us search for a maximizer of the
function t+— 7 + g~ 't?on R*. The latter function is clearly differentiable on R*.Its derivative, the function

t+— 7+ 197 vanishes at
t = (—7)r.
We therefore have

1 1 g 1 —
hy(r) = (=mptir + (=it = Lt
q q

In terms of the conjugate exponent g’ (which is now negative), the conjugate function is given by

00 ifr >0,

hq (m) = —i/(—T)ql if 7 < 0.
q

The dual function is given by
Doy M) = Ao+ Ao = [ O + AH(0) dx. (25)

We observe right away that, unlike in the cases of Tsallis entropy with g > 1 or Boltzmann-Shannon entropy,
the conjugate integrand takes infinite values on nonnegative arguments. However, h, remains differentiable on

its domain R*, with derivative
(h)'(r) = (=1)7~" = (=)™,
Provided that we can find a maximizer ()., \) of the dual function, the optimal density is then given by

) = hy' e + AH®) = (—(Ao + AH ()i 1. (26)

4.3. The case of Tsallis entropy with escort distribution
This case involves the generalized form of entropy ., but including the use of so-called escort probabilities,
giving in principle a more flexible treatment of non-extensive systems [39]. The escort distributions in the
context of Tsallis entropy in fact weights the probability densities of states differently, which could be useful in
scenarios where certain states are more relevant or significant. The interpretation of these escort distributions is
an interesting issue, from their connection to fractality [18, 21] to the view regarding them as interpolation
between distributions [40]. Nevertheless, consistently applying escort distributions results in undefined
behavior, and only achieves the desired outcomes when employed in an ad-hoc manner. Indeed, as a matter of
example, it has been shown that ‘any deformed entropy expression, maximized with the escort averaged
constraints, yields that the Shannon entropy is equal to the logarithm of the ordinary canonical partition
functioni.e. S = In(Zs) instead of the correct thermodynamic relation’ [41].

In this section we depict this formulation rigorously as an optimization problem.

Remark 7. The Tsallis entropy is usually optimized under constraint on the so-called escort distribution, which is
defined as

P’
[pxdx

Itis readily seen that Pis a probability distribution whenever p is a probability distribution. The maximum
Tsallis entropy problem would then read:

P(x) = (27)

Maximize “(p)
subjectto  p € LH(V)N L1(V),

(ZEsc) f p(x)dx =1,
%

[ peotH e dx = 6,
\%4
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in which, again,

() %(1 — f p(x)1 dx) if p > O(almost everywhere),
a\P) =149~
00 otherwise.

Here the replacement of E, by &, is justified by the normalizing denominator in (27). See e.g. [17], pages 88-
89. In this case, we see that, unless ¢ = 1, thelast constraint in (Zgsc) fails to be linear, yielding a nonconvex
optimization problem. In this case, the optimization problem is more difficult. In addition to the difficulties we
observed when dealing with variational calculus, formal derivatives and so on, the nonconvexity entails the
possibility for minima to be local and not global. Moreover, it seems questionable to impose some moment
constraints on the original density p and some other moment constraints on the corresponding escort
distribution.

5. Conclusion

In this paper, we have clarified the derivation of Maximum Entropy distributions in statistical physics, both in
the case of Shannon entropy and that of Tsallis entropy. We believe this clarification was necessary, since the
usual variational calculus approach is not sufficient to guarantee optimality in the corresponding infinite-
dimensional optimization problems.

The standard problem is efficiently addressed in both the Shannon and Tsallis cases. However, the use of
escort distributions can be solved without resorting to Fenchel’s duality, since the resolution is trivial in this case.
This resolution reveals that little can be done with such formalism, since the problem has either no solution or
infinitely many solutions. On the other hand, when the escort distribution is used for the expectation constraint
on the Hamiltonian but not for normalization, we show that the usual g-exponential family solution is
recovered. Thus we are forced with the choice of either use the escort distributions inconsistently (since the
argument of the entropy is not the same as the distributions used in the constraints) or otherwise deal with an
undetermined solution.

Finally, our results imply that escort distributions can be used just in very particular cases of non-linearity in
an ad-hoc manner.
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