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Abstract
In this work, we address twomain objectives. Thefirst one is to provide a rigorous foundation to the
maximumentropy principle in statistical physics, bymaking use of the Fenchel-Rockafellar duality.
The second objective is to discuss thewell-foundedness of the so-called escort distributions in the
context of non-extensive entropymaximization. The duality treatment ofmaximum entropy
confirms the non-rigorous results obtained via the usual variational calculus, however, the use of
escort distributions yields undefined behavior when used consistently, and only leads to the desired
results when used in an ad-hocmanner.

1. Introduction

The principle ofmaximumentropy, that is, the idea of constructing themost unbiased probability distribution
bymaximizing an entropy functional, is a powerful inference tool in statistics which is nowwidely used in several
fields of science as well as engineering [1, 2], ecology [3, 4], astronomy [5], social dynamics [6, 7], and signal and
image science [8], among others. Originally introduced byGibbs [9] in statisticalmechanics as the justification
for the canonical ensemble for equilibrium systems, and extended outside of physics by Jaynes [10], the principle
ofmaximumentropy is based on the interpretation of Shannon’s entropy as ameasure of information. In this
way,maximizing the entropy should be understood as choosing themodel with less information content
provided that it agrees with the constraints given.

Even after the proof of uniqueness of theGibbs-Shannon entropy in the context of inference by Shore and
Johnson [11], the use of different entropy functionals has been proposed, in order to justify the existence of
power-law distributions in complex, non-equilibrium systems such as space and laboratory plasmas [12, 13],
turbulent fluids [14], self-gravitating systems of astrophysical interest [15] and also in open, finite systems [16],
inwhat is known as non-extensive statisticalmechanics [17, 18]. However, the use of Tsallis’ q-entropy seems to
require [19, 20] a different kind of expectation constraint that uses the so-called escort distributions, originally
introduced by Beck and Schlögl [21], instead of the target distribution. Thismodification has been both subject
to criticismon formal grounds and found to produce inconsistencies [22–28]. Furthermore, it has been largely
shown that power laws can be recoveredwithout the need to invoke generalized entropies [29–33], most notably
under the framework of superstatistics [34]. Despite this, the use of non-Shannonian entropies have been
supported recently under particular assumptions [35].

Maximizing the entropy under expectation constraints is usually performed bymaking use of variational
calculus.More precisely, the Lagrangian of the problem is derivated formally, meaning that the infinite-
dimensional probability density that is searched for ismanipulated as if it would be afinite-dimensional
(discrete) probability distribution, and the integral entropy-functional as if it was afinite sum. The functional
analysis so avoided needs, somehow, to be clarified. Dealingwith infinite-dimensional convex optimizationwith
linear (expectation) constraints can be tackled using a powerful convex analyticmachinery, in particular the so-
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called partially finite convex programming, as introduced in [36, 37] and extended in [38]. Notice that formal
derivation eludes the fact that the entropy takes infinite values, and as so cannot be derivated (formally or not)
throughout the space of integrable functions. As an example, consider the function defined on  by
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Then p is nonnegative, integrable with unit integral, and such that all its positivemoments

( ) ( )òm = = ¼p x x x nd , 0, 1, 2, 2n
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exist. It is therefore awell-behaved probability density, and yet it has infinite entropy.
Moving beyond the use of Shannon’s entropy, from the point of view of optimization, introduces additional

issues to be aware of.Most important of all, the escort distributions introduce non-linear constraints thatmake
the problemno longer convex. Linearity can be restored via a transformation of variables, although this brings us
to the following alternative: either there is no solution or there are infinitelymany solutions (see section 4.3).

In this paper, we provide a rigorous derivation of theMaximumEntropy distributions, using Fenchel duality
argument.Moreover, we apply this strategy for dealingwith non-extensive statistics, and show that the escort
avoidance of it yields a somewhat undetermined framework.

Themanuscript is organized as follows. In section 2, we recall the historical background ofmaximum
entropy in statistical physics, andwe outline the computation ofmaximum entropy distributions via variational
calculus.We emphasize that this approach to the derivation of solutions presents weaknesses, whichmotivates
our treatment via Fenchel-Rockafellar duality. In section 3, we review themainmathematical tools for such a
treatment. In section 4, we apply the results of the previous section to provide rigorous justification ofmaximum
entropy solutions, in both the Boltzmann-Shannon entropy case and the Tsallis entropy case. Finally, section 5
presents a discussion and conclusion of this work.

2.Maximumentropy in statistical physics

Themaximumentropy principle [10] is a conceptual extension of theGibbsmethod for the construction of
ensembles in statisticalmechanics [9]. In the original argument byGibbs, the equilibrium states in nature are
states ofmaximum thermodynamic entropy

[ ] ≔ ( ) ( ) ( )ò G G G-p k p pln d , 3B
V

whereΓ= (r1,K,rN, p1,K,pN) are themicrostates of the system, and  is constrained by the external
conditions.However, after the seminal work of Shannon establishing information theory, Jaynes recognized the
maximization of the entropy functional  as the search for themost unbiasedmodel for themicrostate
probability, that is, as a problemof statistical inference.

Themaximum entropy ensemble under the constraint offixedmean energy

( ) ( ) ( )ò G G G =p Ud , 4
V

whereU corresponds to the internal energy, and normalization,

( ) ( )ò G G =p d 1, 5
V

is thewell-known canonical ensemble representing a system in thermal equilibrium at temperatureT,
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whereβ= 1/(kBT) is the inverse temperature andZ(β) the partition function,

( ) ≔ ( ( )) ( )òb b G G-Z exp d . 7
V

The appropriate value ofβ for a given value ofU is the one that realizes the constraint in (4), which in
thermodynamics leads to the caloric curveU(β),
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By replacing (6) into (3), themaximized value of theGibbs entropy is then

( ) ≔ [ (· )] ( ( ) ) ( )b b b b= +S p k Z U; ln , 9B

which, by using the definition of the (Helmholtz) free energy F≔U− TS, leads to

( ) ( ) ( )b
b

b= -F Z
1

ln . 10

In the case of non-extensive statisticalmechanics, one replaces  in (3) by the Tsallis entropy,
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andmaximizes it subject to the usual normalization constraint in (5) and a generalized expectation constraint, of
the form
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According to variational calculus, this leads to thewell-known q-canonical ensemble of Tsallis statistics,
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In order to state the derivation of the canonical ensemble in (6) inmore rigorous terms, we consider the
optimization problem
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We (temporarily) assume that the domain V is a bounded subset of n, inwhich n = 6NwithN the number
of particles. In the above problem,H denotes theHamiltonian of the system, whichwe assume to be bounded
on V. The control variable p lies in the infinite dimensional space L1(V ), and the integrals in the constraints are
well-defined on L1(V ).

The objective functional is the Boltzmann-Shannon entropy. It can bewritten as

( ) ( ( )) ( )◦ò= -p h p x xd , 14
V

S

inwhich
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It is concave, and clearlymaximizing S is equivalent tominimizing the convex functional-S. The
constraints involve the linearmappings

 ≔ ( ) ( )ò Îp p p L Vx xd ,
V

1

and

 ≔ ( ) ( ) ( )ò Îp p H p L Vx x xd , .
V

1

For convenience, we denote by ◦ the linearmapping given by    ( )◦ = Îp p p, 2.

3. Review of convex analytic tools

Let L be any real vector space. A function f: L→ [−∞ ,∞ ] is said to be convex if its epigraph, the set

 ≔ {( ) ∣ ( ) }a aÎ ´f x L f xepi , ,

is a convex subset of ´L . It is said to be proper convex if it never takes the value−∞ and it is not identically
equal to∞. A function g: L→ [−∞ ,∞ ] is said to be concave if−g is convex, and proper concave if−g is proper
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convex.Notice that g is concave if and only if its hypograph

 ≔ {( ) ∣ ( ) }a aÎ ´g x L g xhypo ,

is convex. The effective domain of a convex function f is the set

{ ∣ ( ) }= Î < ¥f x L f xdom .

The effective domain of a concave function g is the set

{ ∣ ( ) }= Î > ¥g x L g xdom .

The only functions that are both proper convex and proper concave are the affine functions. The effective
domain of each affine function is equal to L, both as a convex and concave function.

In optimization, we use indicator functions to encode constraints. The indicator function of a subsetC⊂ L is
the function

{( ) ≔d Î
¥

x
x C0 if ,

otherwise.
C

Let now L andΛ be vector spaces paired by a bilinearmapping

· · ( )x xá ñ ´ L á ñL x x, , , .

An standard example is = = LL d with the usual Euclidean scalar product. Another example is obtained by
taking L = L1(V ) andΛ= L∞(V )withV a subset of n.

The convex conjugate of a function f (convex or not) is defined as the function
 ( ) { ( )∣ }x x x= á ñ - Î Î Lf x f x x Xsup , , .

The concave conjugate of a function f (concave or not) is the function

 ( ) { ( )∣ }x x x= á ñ - Î Î Lf x f x x Xinf , , .

A remarkable fact is that convex conjugacy acts as an involution on certain classes of functions. For example,
if  [ ] -¥ ¥f : ,d is a lower-semicontinuous proper convex function, then

  ≔ ( ) =f f f .

Given a convex subset ÎC d, we call relative interior of C the interior of Cwith respect to its affine hull aff C.
Recall that aff C is the smallest affine subspace that contains C. The relative interior of C is denoted by ri C. For
example, if C is a closed segment in 2, its interior is emptywhile its relative interior is the segmentwithout its
ends. It can be shown that the relative interior of a nonempty convex set is necessarily nonempty.

Theorem1. (Fenchel) Let f and g be functions on d respectively proper convex and proper concave such that

( )Ç ¹ Æf gri dom ri dom . 16

Then

 


≔ { ( ) ( )} { ( ) ( )}x xh - = -
xÎ Î

f g g fx xinf sup
x d d

and the supremum is attained.

The above theorem asserts equality between the optimal values of two problems, together with attainment in
the second one. Is customary to call these underlying optimization problems the primal problem and the dual
problem, respectively.

In the above theorem, both the primal and dual arefinite dimensional. Howover, problems such as ( )P have
constraints involving some linearmapping. The following theoremwillmake it possible to dualize infinite
dimensional problemswithfinitelymany linear constraints.

Theorem2. Let be given:

(i) L andΛ, real vector spaces;

(ii) · ·á ñ, , a bilinear form on ´ LL ;

(iii)  L: d , a linearmapping;

(iv) ( ] -¥ ¥F L: , , a proper convex function;

(v)  [ ) -¥ ¥g: ,d , a proper concave function.
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Assume that  admits a formal adjointmapping , that is, a linearmapping    L: d such that
 á ñ = á ñx xy y, , for every Îx L and every Îy d. Then, under the qualification condition

( ) ( ) ( )Ç ¹ ÆQC F gri dom ri dom ,

one has

 
 

 ≔ { ( ) ( )} { ( ) ( )}l lh - = -
lÎ Î

F x g x g Finf max .
x X d

This theorem is the corner stone of what is is referred to as partially finite convex programming. Various forms
appeared in the literature (see in particular [36, 37]). The selected form is as in [38], where no topological
structure on the infinite dimensional side is requested. The optimization problems

 
 ( ◦ ) ( ◦ )- -F g g FMinimize and Maximize

are respectively referred to as the primal and dual problems. The function 
 ≔ ◦-D g F appearing in the

dual problem is referred to as the dual function. Again, the theorem asserts the equality between the optimal
values of the primal and dual problems, together with dual attainment. The next result will provide conditions
thatwill guarantee primal attainment as well.

Theorem3. (Primal attainment)With the notation and assumptions of the previous theorem, assume in addition
that




 ( ) ( ◦ )Ç ¹ ÆQC g Fri dom ri dom .

Suppose further that

(a)  =F F and  =g g ;

(b) there exists l̄ dual optimal and  ¯ ( ¯ )lÎ ¶x F such that  ◦F has gradient x̄ at l̄ .

Then x̄ is primal optimal.

The latter result provides not only a condition for primal attainment, but it alsomakes appear as awatermark
the possibility of a link between primal and dual solutions. The bi-conjugate relationships in Assumption (a) are
central in the theorem, and the difficulty in our problem is to prove that the entropy satisfies this property. It
turns out that, in our context, it is possible to compute the conjugate of the Boltzmann-Shannon entropy by
conjugating through the integral sign.

An integral functional is a functional of the form

( ) ( ( ) ) ( ) ( )ò m= Îp h p u Lx x x, d , . 17
V

H

Here,V is assumed to be endowedwith aσ-algebra ofmeasurable sets andwith ameasure denoted by μ; the
function h is called the integrand, and the argument p is assumed to pertain to some space ofmeasurable
functions L. In our context, it is enough to consider such functional on the familiar space L = L1(V ), implicitly
endowedwith the Borelσ-algebra and the Lebesguemeasure.Moreover, dependence of h in its second
argument is not vital here, andwe are only interested here in the case where h(p(x), x)= h◦(p(x)).

Clearly, h◦ is a lower semi-continuous convex proper function so that it satisfies **◦ ◦=h h . Conjugating H
is elegantly performed by conjugating the integrand, aswe shall see now. Following Rockafellar, we say that ’a
space L ofmeasurable functions is decomposable if it is stable under bounded alteration on sets of finitemeasure.’
Otherwise expressed, L is decomposable if and only if it contains all functions of the form

◦ +p p,T T c 

inwhichThasfinitemeasure, p◦ is ameasurable function such that the set p◦(T) is bounded, and p is any
member of L. Here, 1T denotes the characteristic function of T: 1T(x) equals 1 if xä T and 1T(x) equals zero
otherwise; andT c denotes the complement of T. One can easily see that the familiar L1-spaces are decomposable,
which includes ourworkspace L1(V ).

Theorem4. (Rockafellar) Let L andΛ be spaces ofmeasurable functions onΩ paired bymeans of the standard
integral bilinear form

( ) ( )òj já ñ =f f x x x, d .
V
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LetH be the functional of integrand ◦h , that is,

( ) ( ( ))◦ò=p h p x xd ,
V

H

with ◦h proper convex and lower semi-continuous. Assume that L is decomposable and thatH has nonempty
effective domain. Then

 ( ) ( ( ))◦òj j= h x xdH

for everyj Î L, and H is convex onΛ.

Applying the latter theoremwith L = L1(V ),Λ= L∞(V ) and h◦ the above defined integrand of the
Boltzmann-Shannon neg-entropywe see that, in our case,

 ( ) ( ( ))◦òj j= h x xd .
V

H

Bymeans of an easy computation, we can see that the function 
◦h is given by

 ( ) ( )◦ t t t= - Îh exp 1 , .

Finally, sinceΛ= L∞(V ) is also decomposable, we obtain that

 ( ) ( ( )) ( ( )) ( )◦ ◦ò ò= = =p h p h p px x x xd d .
V V

H H

Weconclude that our entropy satisfies the bi-conjugacy relationship requested in theorem3.
Before returning to our specific problem, let us state onemore result, inwhich an explicit relationship

between primal and dual solutions is obtained.

Theorem5. (Primal-dual relationship)With the notation and assumptions of theorem 2 assume in addition that
Ddom has nonempty interior, thatH is an integral functional of integrand h such that conjugacy through the

integral sign is permitted. Assume that, as in theorem 3,  =H H and  =g g . Assume finally that the conjugate
integrand h is differentiable over , and that there exists some dual-optimal vector l̄ in int Ddom . If

 ¯ ( ) ≔ ([ ¯ ]( ) )l¢ Îp h Lx x x, ,

then p̄ is a primal solution.

Weare now ready to get back to our specific entropy problem.

4.Maximumentropy densities

4.1. The case of Boltzmann-Shannon entropy
Problem ( )P can bewritten as

( ) ( )◦ ◦-p g pMinimize H

over the space L1(V ), inwhich

     ( )◦ = Î ´ =p p p, 2

and g◦ is the function on 2 given by

( ) ( ) ( )◦ ◦ { } { } ◦◦h h d h d h= - -g , .E 1

The use of the indicator functions δ{1}( · ) and (·){ }◦d E enables to encode the constraints in ( )P . Straightforward
computations show that the adjointmapping   ( )◦  ¥L V: 2 is given by

( )( ) ( )◦ ◦ ◦l l l l= + Hx x, .

and that

( ) ( )◦ ◦ ◦ ◦l l l l= +g E, .

Accounting for the fact that, as we have seen above, the entropy can be conjugated by conjugating through the
integral sign, the dual problem reads:

( ) ≔ ( ) ( ( ))◦ ◦ ◦ ◦ òl l l l l l+ - -D E H x xMaximize , exp 1 exp d .
V
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The functionD is obviously concave and differentiable on 2. Its stationary pointsmust satisfy the system

⎧

⎨
⎪

⎩⎪

( ¯ ) ( ¯ ( ))

( ¯ ) ( ) ( ¯ ( ))

◦

◦ ◦

ò
ò

l l

l l

= - -

= - -

H

E H H

x x

x x x

0 1 exp 1 exp d ,

0 exp 1 exp d ,

V

V

which reduces to

( ) ( ¯ ( ))

( ¯ ( ))
( )◦

ò

ò

l

l
= -E

H H

H

x x x

x x
0

exp d

exp d
. 18V

V

Notice that the equality in (18) is also thefirst order optimality condition of the problem,


( ˜ ) ( ( ))◦ òl l

l

-

Î

E H x xMaximize ln exp d

s.t. .
VD

Proposition 6.The function

˜ ( ) ≔ ( ( )) ( )◦ òl l l-D E H x xln exp d 19
V

to bemaximized in Problem ( ˜ )D is concave, smooth and everywhere finite.

The function  ( ) ( )◦ t t= -h exp 1 obviouslymeets the requirements of theorem5. Providedwe can obtain
a dual solution ( ¯ ¯ )◦l l, , the optimal density is then given by

¯ ( ) [ ¯ ¯ ( )] ( ¯ ( ))
( ¯ ( ))

( )◦
ò

l l
l
l

= - + =p H
H

H
x x

x

x x
exp 1

exp

exp d
, 20

V

where l̄maximizes the function D̃.
Note that ¯ ( )p x corresponds to the canonical ensemble p(Γ; β) under the identificationλ=− β, and also

˜ ( )lD corresponds to the negative of themaximized entropy  in units of kB.

4.2. The case of Tsallis entropy
Tsallis entropy of a probability density p is define as the integral

( )( ) ( ) ( )ò=
-

-p
q

p x x
1

1
1 d 21q

qS

provided pä Lq(V ). The computations differ depending onwhether q> 1 or qä (0, 1).

4.2.1. Case q> 1
Maximizing the Tsallis entropy is equivalent tominimizing the integral functional

( ) ( ( )) ( )ò=p h p x xd , 22q qT

inwhich

⎧
⎨
⎩


( ) ( )=

¥ <
h t q

t t

t

1
if 0,

if 0.

23q

q

Notice first that Lq(V )⊂ L1(V ), since the Lebesgue is afinitemeasure onV. An immediate consequence is
that L1(V ) ∩ Lq(V )= Lq(V ), and our optimization problem takes place in the decomposable space ( )Lq n . As
in the case of the Boltzmann-Shannon entropy, the integrand hq is proper convex and lower semi-continuous.
We nowproceed to compute its convex conjugate.We have:

 
 ( ) ( ( )) ( )t t t= - = -

Î Î

-

+

h t h t t q tsup sup .q
t

q
t

q1

If τ� 0, the above supremum is attained at t = 0, so that  ( )t =h 0q . Suppose now that τ> 0. The function

ta tτ− q−1t q is differentiable on *+. Its derivative, the function ta τ− t q−1, vanishes at
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t= -t .q
1

1

Therefore, on denoting ¢q the conjugate exponent of q (defined by the relationship + ¢ =- -q q 11 1 ), we obtain:

⎜ ⎟
⎛
⎝

⎞
⎠

 ( )t t t t t t= - = - = ¢- - ¢- - -h q
q

q1
1

.q
q1 1q

q
q

q
q

1
1 1 1

In summary, the conjugate is given by

⎧

⎨
⎩ 

 ( )t
t t

t
= ¢

>¢

h q

1
if 0,

0 if 0.
q

q

As in the case of the Boltzmann-Shannon entropy, the conjugate integrand is everywhere finite and
differentiable. Everything is then similar to the Boltzmann-Shannon entropy case, except for the trick consisting
in considering Problem ˜ ;D The dual function is now given by

( ) ( ( )) ( ( ))◦ ◦ ◦ ◦ ◦ ◦
( )

◦
◦

ò òl l l l l l l l l l= + - + = + -
¢

+
l l+ >

¢D E h H E
q

Hx x x x, d
1

d .q
H

q

x 0

Its effective domain (as a concave function) is the set of ( )◦l l Î, 2 such that the function
  ( ( ))◦l l+h Hx xq is integrable on V. IfH is bounded on V, then the domain ofD is 2. In this case, the

optimality system is, as usual, provided by Fermat’s principle, which reads here:

⎧

⎨
⎪

⎩⎪

( ( ))

( )( ( ))

( )
◦

◦
( )

◦

◦

◦

ò

ò

l l

l l

= +

= +

l l

l l

+ >

¢-

+ >

¢-

H

E H H

x x

x x x

1 d ,

d .

H

q

H

q

x

x

0

1

0

1

If ( ¯ ¯ )◦l l, denotes a solution to the above system,more likely to be obtained via themaximization ofD(λ◦,λ),
then the optimal probability is given by

⎧
⎨⎩

¯ ( ) ( ¯ ¯ ( ))
¯ ¯ ( )

( ¯ ¯ ( )) ¯ ¯ ( )
( )◦

◦

◦ ◦
l l

l l

l l l l
= ¢ + =

+

+ + >-
p h H

H

H H
x x

x

x x

0 if 0,

if 0.
24p

q
1

1

4.2.2. Case q ä (0, 1)
It is readily seen thatmaximizing the Tsallis entropy in this case is equivalent tominimizing the integral
functional

⎧
⎨
⎩


( ) ( ( )) ( )ò= =

-

¥ <
p h p h t q

t t

t

x xd , with

1
if 0,

if 0.
q q q

q

T

The above functional is well-defined on the vector space L1(V ) ∩ Lq(V ). Note that themapping

 ( )∣ ∣òf f q
q1

fails to be a norm, as is the case when q� 1, since it does not satisfy the triangle inequality. However, the
following holds:

• the functionalNq( f )≔ ∫ | f |q satisfies the triangle inequality ∫ | f1+ f 2|q� |f1|
q+ |f2|

q;

• Lq(V ) is completemetric spacewith the distance

( ) ≔ ∣ ∣ò -d f f f f, .q
1 2 1 2

An immediate consequence of the first point is that Lq(V ) is decomposable. Let f ä Lq(V ), letT⊂ V be a
measurable set offinitemeasure, and let f◦ be a (measurable and) bounded on T. Then,

∣ ∣ ∣ ∣ ∣ ∣◦ ◦ò ò ò+ +f f f f ;T T
q

T

q

T

qc
c

 

In the right hand term, the first integral isfinite since |f◦|
q is bounded on T and T hasfinitemeasure, and the

second integral is alsofinite since it is bounded above byNq( f ) andNq( f ) isfinite.
The decomposability of both Lq(V ) and L1(V ) implies, of course, that of their intersection. This will enable

us to conjugate qT through the integral sign.
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Let us now compute the conjugate if the function hq. As in the previous case, we have:

 
 ( ) ( ( )) ( )t t t= - = +

Î Î

-

+

h t h t t q tsup sup .q
t

q
t

q1

It is easy to see that, if τ� 0, then  ( )t = ¥hq . Suppose now that τ< 0, and let us search for amaximizer of the

function ta tτ+ q−1t q on *-. The latter function is clearly differentiable on *+. Its derivative, the function
ta τ+ t q−1, vanishes at

( )t= - -t .q
1

1

We therefore have

 ( ) ( ) ( ) ( )t t t t t= - + - =
-

-- - -h
q

q

q

1 1
.q q

q
q

q
q

1
1 1 1

In terms of the conjugate exponent ¢q (which is nownegative), the conjugate function is given by

⎧

⎨
⎩


 ( ) ( )t

t

t t=
¥

-
¢
- <¢h

q

if 0,
1

if 0.q q

The dual function is given by

( ) ( ( )) ( )◦ ◦ ◦ ◦òl l l l l l= + - +D E h H x x, d . 25q

Weobserve right away that, unlike in the cases of Tsallis entropywith q> 1 or Boltzmann-Shannon entropy,
the conjugate integrand takes infinite values on nonnegative arguments. However, hq remains differentiable on

its domain *-, with derivative
( ) ( ) ( ) ( )t t t¢ = - = -¢- -h .q

q 1 q
1

1

Provided that we can find amaximizer ( ¯ ¯ )◦l l, of the dual function, the optimal density is then given by

¯ ( ) ( ¯ ¯ ( )) ( ( ¯ ¯ ( ))) ( )◦ ◦l l l l= ¢ + = - + -p h H Hx x x . 26p q
1

1

4.3. The case of Tsallis entropywith escort distribution
This case involves the generalized formof entropy qS but including the use of so-called escort probabilities,
giving in principle amore flexible treatment of non-extensive systems [39]. The escort distributions in the
context of Tsallis entropy in fact weights the probability densities of states differently, which could be useful in
scenarios where certain states aremore relevant or significant. The interpretation of these escort distributions is
an interesting issue, from their connection to fractality [18, 21] to the view regarding them as interpolation
between distributions [40]. Nevertheless, consistently applying escort distributions results in undefined
behavior, and only achieves the desired outcomeswhen employed in an ad-hocmanner. Indeed, as amatter of
example, it has been shown that ‘any deformed entropy expression,maximizedwith the escort averaged
constraints, yields that the Shannon entropy is equal to the logarithmof the ordinary canonical partition
function i.e. ( )=S Zln S instead of the correct thermodynamic relation’ [41].

In this sectionwe depict this formulation rigorously as an optimization problem.

Remark 7.TheTsallis entropy is usually optimized under constraint on the so-called escort distribution, which is
defined as

( ) ( )
( )

( )
ò

=P
p

p
x

x

x xd
. 27

q

q

It is readily seen thatP is a probability distributionwhenever p is a probability distribution. Themaximum
Tsallis entropy problemwould then read:

( )

( )
( ) ( )

( )

( ) ( ) ◦

ò
ò

Î Ç

=

=

p

p L V L V

p

p H

x x

x x x

Maximize

subject to ,

d 1,

d ,

q

q

V

V

q

ESC

1

P

S

E
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inwhich, again,

⎧
⎨
⎩

( )( )
( ) ( )ò= -

-

¥
p q

p px x
1

1
1 d if 0 almost everywhere ,

otherwise.

q

q

S

Here the replacement of ◦E by ◦E is justified by the normalizing denominator in (27). See e.g. [17], pages 88-
89. In this case, we see that, unless =q 1, the last constraint in ( )ESCP fails to be linear, yielding a nonconvex
optimization problem. In this case, the optimization problem ismore difficult. In addition to the difficulties we
observedwhen dealingwith variational calculus, formal derivatives and so on, the nonconvexity entails the
possibility forminima to be local and not global.Moreover, it seems questionable to impose somemoment
constraints on the original density p and some othermoment constraints on the corresponding escort
distribution.

5. Conclusion

In this paper, we have clarified the derivation ofMaximumEntropy distributions in statistical physics, both in
the case of Shannon entropy and that of Tsallis entropy.We believe this clarificationwas necessary, since the
usual variational calculus approach is not sufficient to guarantee optimality in the corresponding infinite-
dimensional optimization problems.

The standard problem is efficiently addressed in both the Shannon andTsallis cases. However, the use of
escort distributions can be solvedwithout resorting to Fenchel’s duality, since the resolution is trivial in this case.
This resolution reveals that little can be donewith such formalism, since the problemhas either no solution or
infinitelymany solutions. On the other hand, when the escort distribution is used for the expectation constraint
on theHamiltonian but not for normalization, we show that the usual q-exponential family solution is
recovered. Thuswe are forcedwith the choice of either use the escort distributions inconsistently (since the
argument of the entropy is not the same as the distributions used in the constraints) or otherwise deal with an
undetermined solution.

Finally, our results imply that escort distributions can be used just in very particular cases of non-linearity in
an ad-hocmanner.
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